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TIIEOR’i OF cYST IM fli’ ! 10k L~~LA K MULTIVARIABLL SERVOM ECh AN ISMS
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Schuol o( 1n,;iricerin~

U n iv ~rsi!y of ( 1~ r n i i
I r v i n e  i,nli!or:nia

C.A. W otfe
Orinco n , Inc.

San L)icgo~CaIIfo rni3

ABSTRACT
Y (s) E(s )  -

~ Y ( s )
A theory of system type for linear mul- d + ,—~~ J I

t iva r i~ hl’- servomechanisms is develoDed . New G(s)
chara cter~ zaticns cf system type sre formu— — I
lated and two systematic methods for deter-
mining system type are derived. Both method s
are a l gorithmic and easiE r to apply than the
technii ques.qiven in earlier studies. The Y — input (desired output) Y — output
first applies to the case where the open-loop d G — transfer
system is described by its transfer function E — error function
matrix , the second whe re its time domain
state—space representation is given . New re— Fig. 1 Unity feedback system.
suits are also presented for characterizing
and iden tif ying the system type for certain The extension of this concept to the
composite systems from a knowledge of the in— case where the system in Fig. 1 is a multivari—
dividual subsystem types. able (rn—input/n-output), m>l, system is a non-

trivial matter and has been the subject of a
I. INTRODUCTION number of investigations [3-8]. The difficul-

ty stems from the interactions of the various
In classical servomechanism theory [1, inputs with the outputs. This unfortunately

2 ] ,  “system type ” is a wel l  established and precludes identification of system type from
widely used concept for determining the the open-loop transfer function by direct in-
steady-state tracking error characteristics spection as in the scalar case. More funda—
of a closed-loop system from a knowled ge of mentally,  there is the issue of what consti—
its open—loop transfer function . Specifically. tutes a useful definition of type for multi—
a single-input/single-output unity feedback variable systems.
system (see Fig. 1) whose open—loop transfer Wib~rg [3] defines a unity feedback mul—function can be put in the form tivariable servomechanism to be type Ui if

KN (s) the rn-dimensional error vector e(t) =
G(s) = sR. D ( s )  (1) y ( t ) has the proper ty that

is said to be a “ type fL ’ servomechanism *. In u r n  e(t) = 0
Eq. (1), K is a nonzero real constant ; and t-~~
N (s) and D(s) are monic polynomials in the
complex variable s which (i) are of degree in when the input is
and n—s , respectively, where ni <n and 0< t c n ,
and (ii) have no common factors or zero loots, a 1
If the closed—loop system is stable , it is , 1 

~~~~~~
known [1,2] that the steady—state error y (t) = . t (2 )

d
a = u r n  e(t) u r n  [y (t) — y (t)J a

t•” t.= d _ m
where t~ 0 and the a1 are arbitrary real con—

is zero for aU polynomial inputs of the form stants. He then shows that a necessary and

~~1 i sufficient condition for the closed—loop sys—
y (t) La’ t tern to be tyc e is that the in x in open—loop
d i=0 i transfer function matrix G(s) be expressible

where t~ 0 and the a
~ 

are arbitrary real con— G (s) s
tR(s) + P(s)

stants.
where R(s) and P(s) are such that

~ It is 5 times also conveniont 11 ,2] to rc— lip s~ (s) = 0 and h u m  st 1 P(s)II~~
,

fer to G(s) as bei n g type . s~’0 s’O

598
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where 1 t ‘id . 
~~~ r ix invc r u” Thc.r, , r ~n r k N — i n k  r~ . Th i s  te st , wh

y~~, y  “~~, n n  ~‘t i v ly .  ! x ~~ ‘t w t ; ’n In I S  tW c is  co~~ n’~~ t 2~, 1 ly ~i~ c ;J e , C n O  t ’( i~1’ 3 X i V ~~ l ’JCd
( , y  t h y • ,  t h’ . i t . ~~’j, ’ cand i t  i ~~,n ‘, d i  I f  n cu l t  w h ’  ~~, 1 a
an ’J ,;:~~~.; £ o ~ij ~ I y . You:iq and Wi 11 ess ( 7  approach t h’~ t yu’~h.~ i~~~~ z o i c~ i t . :~ by ~~ r~’J~’l 1 ari d 1 in ~~lt  iva r i  ~blt_• servomech.~ni sin p r c b l  e;’. by . iu~~ —
At~ ,:.y. (~~ 

( : ; . ‘e a i n D  r i  I • a unity feedback mont i:,q th~ u su a ]  t ‘re—domain state— sr~ac.! d’~s—
mu ~ t I t’ .~ r ~~h 1.’ s er v  t h r  ~~: ‘ i  s~i id to be r u nt  ion  (A , U ,C )  by the  ir ~t e y r a 1  of t he  ex i c c
t y ç t ’  i f  i n  the ) a r r J c c t  x.n r n.’qat ive ir i t e—  v i z .
ger  Ion  ~ r n  cf. tJ.t o r , — oup t r i t z , : ;  f i r  fu r i c t  i~ ’ri t
caz~ be ~~i lttc •n z f ly C r )  — y ( ;  ) J d i

JO r
G(s) “ G’(s)

s They the:, show that the augmented system is
controllabl e if arid only i f  (A ,B) is control—

~~ er , .  C ’ (~~) h a ;  f o r t s  r r ; ~~’J1ar d . c .  ga i n .  The l abl e  and
l at t  er  X e  ~~,ir e s  t h a t A B

rank n + in

h o  ‘

~~~~
, ( s )  deL C ’ ( s )  ~‘ 0 —c 0

s~ 0
With these conditions satisfied , they are able

wf ~e re .‘.~- . ( s )  is the ch ar a c t e r i s t i c  po lynomial  to a s s i qn  the closed-loop poles a r b i t r a r i l y
of G’ (sJ, that is t h e  l e a s t  com m on denom ina -  via s ta te  va r i ab l e  feedback , and so st a b i l l z—
tor o~ all minors of U ’ (a), , ir i d det denotes ing the  system g u a r a n t e e  zero steady — st a t e
the  d e t e r m i n a n t .  T h i s  c o n d i t i on ,  is e q u i v a —  error when is a vector of step inpu t s .  The
l e n t  to C’ ( s )  h a 7 in g  no zeros (19 1  a t  the o n —  ex t en t  to which  any  channel of the closed-loop
gin. Using t h e i r  d e f i n i t i o n , Sandel l  a’nd gives zero steady—state error for higher—order
Atharis show that the closed—loop system , if inpu ts , e.g., ramps , parabolas , etc., is un-
stab le , has zero steady-state error for an known . Porter and Rradshaw [8] subsequently
input given by Eq. (2). Their condition is extended these results via higher order aug—
easier to check than Wiberg ’s, but also re— mentation to arbitrary type . Interesting ly,
quiees a certain amoun t of trial and error. their conditions for controllability, and

Hosoe and Ito [61 were the first to ob— therefore for pole placement , are identical to
serve tha t the use of a s ing le number is in- those above. Earlier work along these lines
adequate for characterizing system type in had been condnirted independently by Smith and
the multivariable case. For example , if Davison [91.

An alternate Viewpoint on the problem of
1 system type is to consider the system to be
s 0 asymptotically decoupled for a certain class

G (s) = of inputs . In this case , the problem is s ic i —
1 s+2 lar to those posed and solved by Davison (10]
S and Huang [11].

A d i s t inc t ive ly  d i f f e r e nt approach to
the closed-loop system has zero steady-state the problem of determining conditions for zero
error when the input to the system ’s f i r s t  steady—state tracking error is given by the
“channel” is a step and that to its second geometric theory of linear multivariable con—
channel is a ramp. As a result, an accurate trol (121. Conditions , expressed in terms of
description of system type in this case is invariant subspaces , which guarantee the de-
[t , ~2]= (l 21 in contrast to both the Wi— sired tracking properties have been obtained
berg and Sandehl-Athans formulations which by Bhattacharyya and Pearson [13 ,143 , Wonha mn
indicate that the closed-loop system is type [151, Wonham and Pearson [161, and Francis
1. The defini tion of system type thus pro— and Wonham (17]. System type is not dealt
posed by Hosoe and Ito is in terms of the vec- with explicitly in these studies , but it
tor type ( 2., 2. .. .fL I where Z~~~0 is, for each wou’d seem that an intimate connection should
i=l.2,.. .,rn, ~he s~ stem type for the ~th exist.
input-output pair in the classical sense. The approach taken here is based on a
Their test for system type consists of first generalization of the Hosoe—Ito definition .
expressing G (s) in a partial fraction expan- It leads to new characterizations of system
sion type and provides methods for determining

P .,, type from either the open-loop transfer func—
G(s) = )~

‘ J C + G(s) tion matrix C(s) or the state—space represen—
j~~l s~ j  tat ion (A ,B,C,D) which are simpler to apply

than those in previous works. These topics
~rhere G3 are nonzero constant matrices , 

arid are ’trea ted in Sections II and III . In Sec—
a(s) is rational and has no poles at zero. tion IV, new results are obtained for the
Letting c~ be the matrix obtained by deleting characterization and identification of type
the j th  r~iw of one forms for composite systems . The conclusion is aiven

r in Section V. In a companion paper (18], the
C1 02 ... C I ~~~~ C t ... Ci theory and methods for achieving a specified

p 1 p type via ei ther pre- or post-compensation are
U G~ 0 1 ... 0 and N~= G~ G~ ... 0 presented.

0 ... o J ...
509
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4 II. T Y P E  . . . I TPAh5~FER F t~ J’:’~ IOU 
— —

In

a 1 tThe f o l l o w i n g  is a y e n e r a l i z . t  non of the
Hosoe— Ito  16) d e f in i t i on  of sy ct e i ;  t ’.’pe . k2

4
D e f i n i t i o n  1 k2

A~~~Tty feedback multivariab le linear a t
system i s  called ty~ c (Z1 f~ . • 2~~~t i f  each 2

t 1, i=.i , 2 ,... ,m , is t h o  largest in teger such
that the rn• in open-loop transfer function mat-
rix U(s) can be factored into y (t) . (3)

d
C(s) H(s) G’(s) k

a t m
where

H(s) = diag f_ ~
_ 

—
~~

-_ ... 4— 1 k~ ! 
—L5 ’ S 2 S i n J

where for t .>0 , the a1 are arbitrary real con—
and C’ (a) has rio zeros at the origin. Here, stants and ó~ k~ <f~ with the k~ integers; and
C(s) is termed a type ( i .

1
12 ... 2~~~] t r ans fe r  for t j~ O , aj=k i=0.

function no t rix. 0 The following definition and lemma will
This definition generalizes that in [6) be useful in the proof of the main theorem of

to the extent of allowing £
~~
<0. In terms of this section.

the steady—state tracking properties , it is
of no consequence whether the “ i, are less D e f i n i t i o n  2.
than zero or equal to zero. The maqnitude of Wi,~h C(s), H(s), and G’(s) as in Defini-when is less than zero, however, will tiori 1, li(s) and li(s) are defined by
be of importance in the sequel when the pro-
blem of system type for series connections r
of systems is considered . H(s) = diag I -4=- —

~~~~
- -4=.It is worthwhile to note at this point 1 s I s 2 S in

that system type for multivariable systems
is defined in terms of a left divisor. It
will be shown that this leads to meaningful r 1results for steady-state errors. The follow— It(s) = diag ...
ing simple example shows that a right  divisor Ls2

~i s~twill give d i f f e r e n t  results, in fact , results
which are erroneous. where t~ ~~ ~~ 

> 0 t~ if L~ 0
and t =

Example 1. Let ~‘ 0 if L~ ~ 0 0 if Lj ~ 0

1 1. so that
S 5 ,r•

G(s) = H(s) = H(s) H(s) = H(s) H(s) 0

0 1
I~~T 

Note that li(s) has only,.,nonnegative pow-
ers of s as elements, while H(s) involves only

Factoring C(s) according to the definition nonpositive powers of s. Now C(s) can be
yields factored as

1 0 1 1 C(s) = H(s) G’(s) = H(s) C(s)
C(s) =

0 1 0 1 where a(s) = H(s) G’ (s).

Lemma 1. With C(s) = H(s) G(s) as above,
Thus C(s) is the open-loop transfer function A~ A 1~ A2j.
matrix of a type ri 0] system.

If now an attempt is made to find an Proof. From Lemma 1 of [4) it follows
H(s) which is a right divisor , none can be that .A~ divides AjjA~~. Thus it su~fices to show
found except the identity. This would m di- that deg (Li 0) = deg (All ) + deg (A G). By the
cate that C(s) is type [0 0]. 0 

definition of H(s) and il(s), each factor of s
With system type as specified by Defini— in A H must~correspond to factoring a pole of

tion 1, it will be shown below that a stable C(s) into H(s). Otherwise, A~ would remainservomechanism with a type (Q 1~~2 constant while the determinant would lose a
open—loop transfer function matrix yields factor s ’, adding  a zero at s=0, which is not
zero steady—state error for input signals of allowed. Thus , each factor $ in till reduces the
the form order of Li0 by one when going from to form

Li~ . Also , the factorization cannot introduce
any other new poles. Hence,

deg (AC) = deg (Li~ ) + deg (A ~ ) 0

600
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A r 9 11’ n r o d j t x c ’ u t i o x i  of t I re  proof of 1.
~ 

dot ( 1 4 U ( s ) )  = 1~ ti~~ detll + C(s))
t h i s  I .::‘h i c! owr ;  t f i t I.

~~ ~• H  ~~~~~

Now the t tu or ec,  On ot i r i y — n t u t c  error t’H t~ deL. (il(s)
cun be stated .ind prov. cl .

• dct(t~~ (s) + U ( s ) ]  (9)
Theorem I .
— L .TG (c) by a typo t 2. i :  ... ~~ trans— By construction of H(s),
for function o ,trix . Then th t  stab ’e unity
feedback n y ~~r t c ~ h a v i n g  C(s) as its open—loop ‘H det [If(s)] = 1 (10)
transfer function r :,t.rix wil l track inputs
of the form given in  Eq. (3) with zero steady- Combininq Eqs. (10), (9) and (8) yields
state error.

Jim det [H’~~(s) + a(s)) ‘ 0 (Il)
Proof. The Laplace transform of Eq. (3) s=0

yields
With the product in Eq. (11) nonzero , then

I a a a iT E~~. (6)  w i l l  be v e r i f i e d  i~ the pro~~uct of
Y (s) 

I~~~~
__i_ _ .J!L~ A G w i t h  each cofac tor  of [H ~~ (s) + ~~( s ) J  is a

d 
~~~~~~ 5~(2 ~~~ ,.k~ +h I polynomial in ~~~. Since H (a) has no poles,

T L J the poles of ,jII-’ (s) + a(s)) are a subset of,
where ( ) denotes the t ranspose .  Then the the poles of d ( s )  . lt  then fol lows~ since ‘

~~~
Laplace t r a n s f orm of the sys tem e r ror  is conta ins  a f ac to r  for each ,pole of p ( s ) ,  t h 2 t

— 
t imes  any cofactor  of [Ir ’ (s)  + a(s)) is a

E(s) = ( I  + C(s)] ‘ Y (s) (4) polynomial. As a result ,

Now with l i ( s )  as g iven in De f i n i t i o n  2 , h im[I r ’ ( s )  + ?~(s) ]~~it is noted that s-*O
A n.. cofactor [Fr’(s) + a(s))..

u r n  H ’ (s) ‘
~d

1
~~ 

= z (5) = him G ii
s-’O ° 5.0 det [H ” ’ (s)  +

where 20 is a finite rn-vector, a finite number for all i, j
Thus if (I + G(s)]’’ is factored as

where l~ i~rn and l~ jIm. Thus Eq. (6) is yen -
[I ‘ G(s)) ’ = (H(s)’ [H~~~(s) + 0(s)))—’ fied and Eq. (7) holds. Using the final—value

theorem, the steady—state error is zero if the
= (H ’(s) + G(s)] ’H”’ (s) limit exists. However , by the assumed stabil-

ity of the unity feedback system , the limit does
and it can be shown that exist and the theorem is proved. 0

As an imm ediate consequence of Lemma 1,
1im [H’~~(s) + ~ (s))” = G0 (6) one has the following proposition concerning
5.0 bounds on the type of a transfer function type.

where C,, has finite elements, then the corn— Proposition 1. Let C(s) be a type
bination of Eqs. (4), (5), and (6) can be used (9. 9. ... , t,,~] transfer function matrix. Also,
to show that 1e~ 

2

• In m
him s E(s) = h int s him E ( s )  L’1’ = and L = ~~~~~~~~~ Then,

s.0 g-’O 1 1  i=1

= him s u r n (H~~ (s) +~ (s)J” (i) I..” is less than or equal to .the mul—
s~0 s~0 tiplicity of the pole of C(s) at the

origin
I him (H~~~(s) 17d 1

~~~
1 and

• s~ 0 (ii)L is greater than or equal to the
multiciphicity of the zero of G(s)

= lint 5 G~ z0 = 0 at the origin.
5~0 (7) Proof. (i) If L’4’ is greater than the

multiplicity of the pole of C(s) at the oricin,
Finally, Eq. (7) can be used in the final- then zeros at the origin have been added to
value theorem of the Laplace transform to 0’ (s) contradicting the definition .
prove the present theorem. (ii) If L is less than the

• First, Eq. (6) must be proved . By the multiplicity of the zero of G(s) at the origin ,
assumed stability of the unity feedback sys— then a zero would remain at the origin in 0’ (s)
tern, the zeros of the polynomial A,.. det again contradicting the definition. 0

(I + C(s)) must be in the open left—half com-
plex plane [20). Then III. IDENTIFICATION OF TRANSFER FUNCTION TYPE

u r n  AG det [I + C(s)) ~ 0 (8) If the dimension m of the transfer func-
s.0 tion matrix C(s) is small , say two or three,

the type of the system can be found via trial
Using Lemma 1, and error using Definition 1. However, for

larger values of in, the procedure would be

601
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c x t r c r ’  ly  ? . i i ~~~ s s i n ce a t  each stajI ’ the into C (S) • all of the factors of in J~~~ I (~9
• cha r t ’ t . r i n  t i c ~~ 1 .in. t be computed, must  ti • output decoup i rig ,~o ro~.. and hence re-

in t~~~~n~~~en t i o r . ,  two s i r;  1 . r  methods  of corn— movable .  by repeated .~pn l i c at i on  of t h e  los—
• c i ’ ~~~~~~~~~~~ 

.
~~~~~ t~~g n  a r e  ; i v en .  The first gsa in t Lc  A p p en d i x  to I I ~ ( s)  }l~ ( s ) T ) w i t h

• riet~, f j i v e s  r e  s y s te m  t yp e  f r o m  a s i m pl e u 0 , the  axi mal powers of which can ho re—
observa ’ ic ,11 of one of t f . e  f a c t o r s  in a co— moved from P ( s )  a re  the l a rges t  powers of o ,
p m i r e  f a r ~~n r 1: t i e r  of  ‘L ~ t r a n s f e r  f u n c t i o n  r a ’, .j ,  which  d i v i d e  each clement of colui n i
rc~~t r i x .  ‘ or r . . tL~~ r - e t l ,J is an a l a o r i t h m  of L i ( s j .  So the largest power of s in  e n t r y
w h i c h  g iv e s  the system type based on rank con-’ i of ir ’ Is) such that, no zeros are irtroJuced
d it i ns  u s ing  ‘ L ’  s t a t e—space  r e p r e s e n t a t i o n  in C ( s )  and the lar~ est power of which ci-
(A ,i ,r ,j)) w h i c h  is assu;.ed to Li a m i n i m a l vides each element  of colum n i of 0(u ) are

• r t a 1 i . .’~~t io n .  ‘.(eoe rethod~; a r e  s imp l e r  than  the same , and the theorem is proved . U
• t h e  rank c r n d i t i c n s  i n  [1), e s p e c i a l l y  if A l g o r i t h m s  for de t e rmin ing  a coprino fac—

there  dre  l ar e e  power of a i n  th e  denomina to r  t o r i z a t i a n  of a ra t i ona l  tr an s f e r  f u n c tion
of any e l er e n ’  of C(s). matrix can be found  in ( 2 2 ) .  The f o l l o w i n g

Hoth ne th  dc cons idered  g i v e  the system example  de r .onct r a te s  the method of d e t e rm i n —
type o n l y  to tL e  p o in t  of d et o r r i r . in g  the ing  sys tem type which  is described in the
~~~ + If  a p a r t i o n l u r  c le r en t  i j is a c t u a l l y  above theorem .
nega t ive , these methods w i l l  i n d i c a t e  t h a t
the ~ j  is .equa~ to zero.  Thus , onl y the d c -  Examp le  2 .  Let

• merits of H ( s )  are determined.  Thi s  is , how—
• ever , the only part wh i ch is of concern when 1 1 1

the stead y - s t a t e  p r o p e r t i e s  are c o n s i d e r e d  as s s s+2
was demons t r a ted  i n  the proot of Theorem 1.

• The f i r s t  method is presented by way of G ( s )  = 0 _,L 
~~the fo l lowing  theorem . s+2 ~5

• 1 1
0

• Let G(s) be the open—loop transfer func-
tion matrix of a unity feedback system and .

let D’’(s)N(s) be a coprime factorization of A coprime factorization yields

G ( s ) .  Then the u n i t y  feedback system is type
[Z” l~ ... Z ,~] where the Z ’~ , i = 1,2 , .. ., in, —,.±.-_.~.— 0 0
ar.~ ~he greates t  power of 1s such that  each st s +~~)
element of column i of D ( s )  is divisible by 1

Proof.  From Def in i t ion  1, each is 
C ( s)  0 (s+l)  ( s+2)

rnax~.rna l such that  no zeros are introduce~ 0 0 52 (s+l)• in d ( s )  by the f ac to riza t i on  C ( s )  = H ( s ) d ( s ) .
Further , a(s) can be expressed in the form

C( s )  = H~~ (s) G ( s )

= H_ i (s)  D’~~~(s)  N ( s )  s+2 s+2 ~

where D’~ ( s ) N ( s )  is any coprime factorization x 0 9+1 1
of G(s), and ~~

1 (s) ,  N(s) and D(s) are all
m~rn polynomial matrices. The polynomial sys— 1 0 5(5+1)
tern matrix for C(s) is

Then D(s) is

= ~ 
N(s)] Is(s4 ’2) 0 0
0 J D(s) 0 (s+h)(s+2) 0

The zeros of C(s) are the zeros of det I 2P(s) after the decoupling zeros [191 have L 0 0 5 (s+l)
been removed . Since D(s) and N(s) are co—
prime , the only decoupling zeros are output and it follows that C(s) is type (1 0 2). Q
decoupling zeros. Let The second method of determining transfer

function m a t r i x  type is for the state—space
ID (~~ ) N s l  representation (A ,B,C,D) which is assumed to

P (s) = I I be a minimal realization with the four matrices
• I ~~ — ‘ (~~ ) 0 I • n~m , ri’r , mxn , and m~r, respectively. Rather

I J than a direct characterization of type , the
denote P18) with its output dec’oupling zeros following theorem presents an algorithm which
removed determines the value of for each i.

The zeros of a(s) are the solutions of Theorem 3.
0 = det p (q) 

- If the state—space quadruple (A ,B,C,D) re-
presents the open—loop elements of a stable in—

dot 11 1
(s )  ‘ dot N (s) input/rn-output unity feedback system , then the

following aluorithm will determine the system
So in order that no zeros be introduced ty~C.
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A i q o r i t h : : . Let Q (C’~ ATC~
’ ,12T cT ... power of a .  Then if the  r a n k  Q~ is decreased

:An_ 1T C~~1T , ~~~~ • th e  ( , i JO ( : r V ab i l J  ty  matrix, by 1 when j j~ £ncre ir . ct by 1, ~ n o u t p u t  ‘Ir ’ —
and l e t  -°r c o u p l i ng  z . c o  wan added . The a l go r i t hm  t h u :

• ‘l~ T TI T TI 1’r T I  f in d s  the ]~~r q e s t  j s :’:h tha t the rank  of
C) a ii C1 i ~ J I 

~~~~~~~ 
c) decreases a t each stop which , as was seen ~~~,

i ‘ ‘ 3 i i I 1 j the proof of Theorem 2, is the of the
I matrix transfer funct ion .

where c) is the ma trix C with row i replaced As was also noted in the proof of Theor-
by row i of ~A J . With ‘hose matrices, per— cm 2, the number of output decoupling zeros
form the t e l  l~ wi rig St j o :  introduced by element i of .~r ’ (a) is i ride—

(1) let p rank Q pendent of the others .  ‘Ibis j u st i f i e s  the
(2) •e’t row counter  i 0 procedure is the algorithm of looking at one
(3) Increment row counter i by 1 row at a tire. fl
( 4 )  S~ t j  0 The f ol l o w in g  example demonstrates  the
( 5 )  in c r em e n t  j by I algorithm.
(6) Form Q’
( 7 )  Tht k 1 rank Examp le_ 3. Let the open—loop elements
(8) If k + j = p, go to (5) of a u n i t y  feedback system be defined by
(9 )  Set 11 = j — 1 the quadrup le
(lO)If i in , go to (3)
(11) End.  0 1 0 1 0

Proof .  In the proof of Theorem 2 , it A 0 0 0 B = 1 0
was shown that the of the system type vec-
tor are the lartest powers o f s  such that 0 0 0 1 1
mul tiplication of row i of G(s) by s intro-
duced e x a c t l y • output  decoupl ing  zeros. [1 0 01 10 0
M u l t i p l i c a t i o n  ~ y l a rger  powers would not in— C 1 

D
troduce any more decoupling zeros. The ef— 10 0 ii 10 0
fect of multip lication of row i of C(s) by s
to some power when C(s) is g iven by Using the algorithm , one finds that

C(s) = C(sI — A) ’B + 0 rank Q = 3

is developed as follows. rank = 2
The result of multiplying row i of G(s)

by s) is giver by row i of • 
rank Q~ = 1

s~ C(sI — A)”~ B + s~D (12) rank Q~ 3. (hence R = 2)

By using the identity (SI - A) (sI - A)_ t rank Q~ = 2
• = I, the result

rank = 2 (hence t2 1)
s(sl — A)~~ = A(sI — A) ’ + I (13)

Thus, [A ,B,C,D] represents a type (2 1) trans—
is obtained. Repeated application of Eq. fer function matrix. This cart easily be yen -
(13) to Eq. (12) yields the result fied in this case since

Si C(sI — A)~~ B + S)D = CA3 (sI — A) ’B
S2

k j—k—1 I+ E CA Bs + S D G(s)
k=O 1 1

I i~ D
The system matrix for C(s) with row i

multiplied by s) is then IV. SYSTEM TYPE’FOR COMPOSITE SYSTEMS

f SI—A B 1 In this Section, some results are obtain—
• P (s) =

~~ 
. . I ed for system type of composite systems. The

• 
I C~ D~ (g) first result is a bound on the system type for

1 1 
J ,~ the series connection [see Fig. 2 ( a ) )  in terms

where c~ is given by the algorithm and 0J (s) of the transfer function type of the indivi-
is 0 with row i replaced by. row i of 1 dual transfer function matrices. The second

result gives Conditions under which a traits—
—k—i k fer function type is maintained when it is

~ 0 + ~~ s-’ CA B connected in parallel with a constant gain
k=O matrix [see Fig. 2(b)j.

• From Theorem 8.1, Chapter 2 of Rosen—
brock (191, the rank defect of the observ—
ability matrix Q is the number of output
decouplinq zeros. Thus , when j is increment— G,(s) G 1 (s)ed by u n  the algorithm , this corresponds to
multiplication of row i of Cs(s) by one higher (a) Series connection
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a t :. = 0 .  0

Co r o l l ar y  2 . if C(:;) is type F~ ~~~O~~ d U fsr every i , then G(s)4K is
at least type (Z~~~ ~~~~~~

Proof .  Using tIre property of D (s) givesJ in T~~~r~~ 2 , and the assutr .ed va)  ucs for  the
ever j  e ocr i ci f t hr  p roduc t  D (a) K is

(b) Parallel CL57)O( t 1 : 1  drvjsit,lo by s. Ths n the cor:Start tCrm in
the equation det [U(sHD(:;)K]=0 must he the

Fig. 2. Com~i o s i ’e  rysterti connections, same ~• a the  c o nst an t  term in the ei~ ation
dat ?~(s)=O. Since u(s) has f l )  zeros at the

In t he  f~ rrt in5tu~ cc one has the fol— origin , the constant term is rionsero . There—
lowing result , fore dat f~~(s)+D(s)KJ has no zeros at the ori-

gi n . 0
T hej r s 4.

~~ 
(s )  is tyuc ~~~~ ~~, ) and G~ ( s )  V. CONCLUSION

is type f’ !~.~ ~~~~ t h n  the series combrn—
ati~~r G 1 (s)C (s) i~~ at least type ~~~~~ ~~~~~ 

In th i s paper , a t heory of system type
... t~~+L ) th ’ re Z = n~s [ Z ~~.’ ?‘] (By at for line ar rultivariable servomechanisms ,
least t y j  ~ i + ~ ~~~+i .., 42J i~ is meant which is based on a gene ra l i z a t i on  of the
that err~ h i ’ ,~ where ;•~~ ~is the type for Uosoe-Ito [6] definition of system type , has
the ~~Ui ir.p~ t-~ utput pi ir ’of the composite been presented. The r oro general definition
system.) I h e  p roe f  f o l low s  f rom t ) e f ,  ~ 

permits the development  of results for the
The following corollary is an immediate determination of system type for composite

consequence of the theorem, system s.
New characterizations of system type have

Corollary 1. If G(s) is type ~z 1 L 2 
been f~ rmulated and two systematic methods

L1~1 and K(s) is a dynamic compensator which for de terrirning system type have been derived .
is used to s t a b i l i z e  the unity feedback sys- The first method is directl y suited for app li—
tern with G(s)’K (s) as its open—loop transfer cation to the transfer function matrix (fre—
function matrix , then the composite system quemcy domain) description of the system, the
is at least type [i 1 9.2 .. .ip) provided that second for the state-space (time-domain) no—
K(s) has no zeros at the orig in, presentation. Both are easier to apply than

those in previous studies and are algorithmic
Remark. Corollary 1 was stated in [61 in nature. The second method is the only

without  the condition that E ( s )  have no zeros known result which treats multivariable sys-
at the origin. A simple example in the single tern type directly in terms of the state—space
input/single-output case shows the necessity quadruple (A,B,C,D) without need to compute
for this requirement. first the corresponding transfer function

The second result of this section per— matrix.
tains to a type [11 t , ~~

.. Z~ J transfer func— The results here on system type for corn-
tion matrix which has a constant gain matrix posite multivariable linear systems in terms
in parallel [see Fig. 2(b)]. This result is of the type for the individual subsystems are
used in (23) in a study of stochastic multi— also new, and have found applications else-
variable servomechanisms, where [18,23).

Theorem 5. APPENDIX
Let C(s) = D”’ (s)N(s) be a type [R.1 t2_ .

Lm] transfer function matrix and K an m~m 
It is known [19] that the system matrix

constant gain matrix. Then C(s)+K is at
least type (Z1 L , ... L~~] if and only if det ~ 

T(s) U(s) 1
(N(s)+D(s)KJ has no zeros at the origin. = 

~ —V(s) W(s) j
Proof. Since K has no poles, the poles

of the parallel combination G(s)+K are simply gives rise to the transfer function matrix
the poles of C(s). Now G(s)+K can be factor-
ed as G(s) V(s) T t (S)U(S) + W(s)

and conversely to within strict system equi-
C(s) + K = H(s)(G’(s) + H~ ’(s)KJ (16) valence where T,U ,V , and W are m ’n, n~r, nr~n,and rnxr , respectively.

and Eq. (16) can be written as A system matrix which contains decoupi-
flag zeros can be reduced to one of least or—

C(s) + K = H(s)(G’(s) + H”~~,(s ) K )  den by remova l of the decoupling zeros. The
following lemma concerning reduction of order

= H (s)D- t (s) (N(s)+D(s)H”~~(s)K) 
is needed in the proof of Theorem 2.

= II(s)~~~’ (s) (N (s)+D(s)KJ 
Lemma.  Let U(s) = diaq [1 1.. .1 (s—a) I

• ... lT~~h~re (n—a ) is the ~€h diaqona] element.
Hence, C (s)+K is at least type (1 1 t , 

~~~~~~~ 

• and m is any comp lex number. Theta r a n k
if and only  i f  det [N(s)+D(s)XJ has no zeros (Tb) U (i H  < in if And only if every element

6~~
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